Design carefully: Injection Circuit

- Goals:
 - Full chip characterization without external components
 - Measure Noise
 - fine steps up to $\sim \frac{1}{2}$ mip
 - calibrated charge
 - Inject known step through known injection capacitor C_{inj} : $Q_{inj} = C_{inj} \times dV$
 - Measure dynamic range and (linearity)
 - larger steps up to ~ 4 mip
 - Measure timing and double pulse behavior
 - requires more than one step or better current pulses: $Q_{inj} = I_{inj} \times dT$
 - Measure tricky details
 - i.e. measure crosstalk: inject one channel, measure thres/noise on neighbor
 - Inject leakage current, measure leakage current
 - Versatile Monitoring Bus

Possible Circuit

Detail: Injection via Voltage Step

- Goals:
 - Bipolar pulses (pos. and neg. Charges)
 - Large voltage steps (less sensitive to noise in Vinj)
 - PMOS switches for radiation hardness
 - Switchable Cinj for adjustable range (2-10fC)
 - Short pulses (some ns)
- General Problems:
 - Charge injection
 - Bipolar pulses with PMOS
 - Need a good reference/ground voltage

=> Switches tricky, design carefully

Schematic

Design Aspects

- Only PMOS switches
- Bipolar pulses possible
- Charge injection:
 - No problem with posedge (pos. charge injected doesn't matter).
 - Compensation for negedge (intentionally over-compensated)
- Especially delayed control signals needed
- Low threshold transistors for large output range
- Control logic can be actualized using rad-hard standard cells
- Critical point: Need a good reference voltage (here Vdda)
- Simulation results: Fast and exact (see next slices)

Transient Simulation

Transient Response

=> No over-/undershooting of voltage step due to charge injection, pulse length <3ns

Injected Charge: switch off - small capacitance

Capacitor 2.022fF => between 900mV and 1.74V simulated error <= 0.05% (max. step 1.74V limited due to charge injection)

Injected Charge: switch on - large capacitance

Capacitor 10.11fF => between 900mV and 1.74V simulated error <= 0.09%

Summary

- Bipolar pulses
- Rad-hard design
- Possible injection steps 0.06 900mV
 - Fine steps: Qinjected = \pm (0.03 1.8fC), resolution: 2fC/V
 - High range: Qinjected = ±(0.15 9.0fC), resolution: 10fC/V
 - Any other resolution in-between is easy realizable
- Max. 0.1% (simulated) deviation from ideal charge values
- Fast pulses (< 3ns)
- Most critical point: Good reference voltage needed

