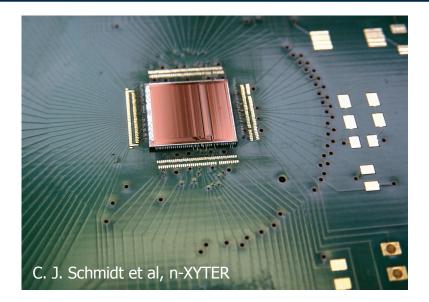


Tim Armbruster


technis

informatik

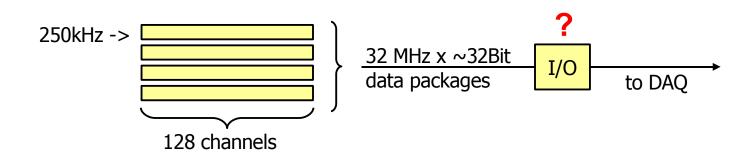
tim.armbruster@ti.uni-mannheim.de

CBM Workshop on Silicon Detectors in Darmstadt, April 18-20, 2007

Towards a CBM-XYTER

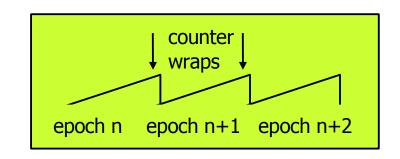
- The n-XYTER readout chip is being tested for application in CBM
- First n-XYTER measurements are available now
- n-XYTER can be used for first detector tests
- Concurrently, first steps towards the next generation chip 'CBM-XYTER' are made
- Our current aim is to work out specifications & architecture options for CBM-XYTER
- First work packages are already defined but many questions are still open...

- Baseline technology: UMC018 (most experience in various groups)
- This is certainly rad hard when using special rules. But
 - this costs area = money (\sim 4 x in digital part)
 - this costs power (increased caps. \sim 4x in digital part)
 - introduces design limitations (many IPs not usable, no long NMOS, asymmetric characteristics, requires design kit changes,...)
- Question therefore:
 - can we live without special design tricks?
- Possible Design Strategy:
 - Use non-hard standard cells and accept slight increase in leakage current.
 - Use rad-hard layout in critical (small current) analog sections.
- Possible SEU Strategy:
 - Use intrinsically Hamming correcting state machines (Kebschull, Brüning).
 - Use Hamming correction for larger memory blocks.
 - Use SEU 'hardened' cells for single bits (increased capacitance, DICE cell).
 - Generate a parity information from all single bits and send this together with data in a status word to make sure that everything has been ok.
 An error here would trigger a reconfiguration.

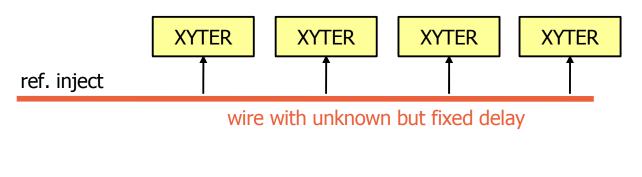


- (HD) Irradiate TRAP chip to high doses (10Mrad)
 - TRAP has already been tested up to 1 Mrad by the ALICE collaboration, in particular Volker Lindenstruth's group
- (MA) Design a digital test-ASIC with identical designs made from
 - radiation hard standard cells
 - non radiation hard standard cells
 - compare power / speed / leakage pre- and post-rad
- (R. Szczygiel, Krakow) Submit Single Transistors for Noise measurements

 white noise
 - 1/f noise
- (Sven Löchner, GSI) Measure & submit SEU test chips

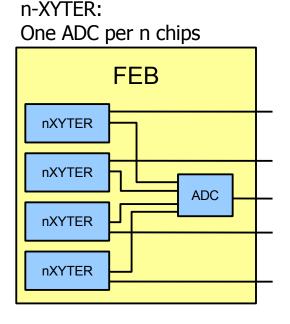

Data Rates

- Hit rate per channel (Poisson): 250kHz \rightarrow 128 x 250kHz = 32MHz per chip
- Data per hit: ~ 32Bit
 - 10...14Bit time stamp
 - 7 Bit channel id
 - 6...10 Bit Amplitude (assuming ADC)
 - 2..4 Bit Flags
- Total rate per chip: 32Bit x 32MHz = 1 Gbps
- What physical output channel?
 - LVDS inputs of FPGAs go up to ${\sim}600 \text{Mbps} \rightarrow 2 \text{ links}$
 - A ~2.4 Gbps high speed I/O building block is planned (Brüning/Tielert) this would give a nice contingency, or we could use one link for two chips



- At an average hit time difference per chip of ~30ns and a time base clock of 1GHz, average time stamp difference is 30, i.e. 5 Bit.
 Must use 'significantly' more bits than this
- Assume Epoch marker (wrap around flag) is sent at every wrap in a full word:
 - overhead for 8Bit TS: 31ns/256ns = 12%
 - overhead for 10Bit TS: 31ns/1024ns = 3%
 - overhead for 12Bit TS: 31ns/4048ns = 0.7%
- Too long TS increases data volume \rightarrow 12Bit ?
- Is an epoch marker really needed?
 - DAQ detects wrap automatically when enough data arrives.
 - Could inject empty 'dummy' events when one epoch would stay empty.
- Need ideas and detailed simulation of data randomization (Token Ring, FIFOs, ...)

- The time stamp precision of 1ns results in a counter frequency of 1GHz.
- Time stamp requires precise global reset.
- Possible realizations:
 - The serial I/O building block from Brüning/Tielert should provide a precise reset output.
 - Simpler:
 - send reset which may not reach chips 'simultaneously', but which is stable
 - sent test injections to verify
 - cross calibrate test injection to beam data


Towards a CBM-XYTER

LS Schaltungstechnik & Simulation

Benefit: ADC on chip

Basic choice - three options with ADC(s) on chip:

- One ADC per chip: 128×250 kHz $\rightarrow > 32$ Msamples/s
 - Available from Kaiserslautern (Tielert / Muthers)
 - Analog FIFOs are still needed
 - Crossbar between FIFOs and ADC (e.g. TR)
- <u>One ADC per channel</u>: Slower ADCs with 250kHz plus overhead would make it (500k-2MHz ADCs)
 - Double buffered input: No analog FIFOs needed
 - All data is early in digital domain; connection network can easier be realized
 - But the utilisation per ADC is small
- One ADC per n channels:
 - Hit distribution per n channels is better than only per channel; higher ADC utilisation
 - Less ADC sample speed overhead
 - Crossbar (TR) and FIFOs can be less complex
 - Compromise between first two options

Building Blocks

- Charge Amplifier
- Leakage current compensation
- Injection circuitry (fast digital, variable analog, arbitrary patterns)
- Fast Shaper / Time walk compensation / Discriminator / Trim
- Slow shaper / peak an hold (triggered by hit)
- Neighbour logic (?)
- Time base counter, clock generator (PLL, or from IO block)
- Analog / Digital FIFO
- Crossbar to ADC
- ADC
- Priority Scan
- Fast Serial Data Output
- Slow Control (I2C, JTAG), DACs, Reference

Specifications

- Must nail down more specifications soon to chose between options:
- Sensor parameters for analog part
- Resolution requirements for timing & ADC
- data rates & format for R/O
- chip geometry / interconnect for floorplan
- technology to get started

Thank you for your attention!

LS Schaltungstechnik & Simulation